728 research outputs found

    Reducing the Top Quark Mass Uncertainty with Jet Grooming

    Full text link
    The measurement of the top quark mass has large systematic uncertainties coming from the Monte Carlo simulations that are used to match theory and experiment. We explore how much that uncertainty can be reduced by using jet grooming procedures. We estimate the inherent ambiguity in what is meant by Monte Carlo mass to be around 530 MeV without any corrections. This uncertainty can be reduced by 60% to 200 MeV by calibrating to the W mass and a further 33% to 140 MeV by applying soft-drop jet grooming (or by 20% more to 170 MeV with trimming). At e+e- colliders, the associated uncertainty is around 110 MeV, reducing to 50 MeV after calibrating to the W mass. By analyzing the tuning parameters, we conclude that the importance of jet grooming after calibrating to the W mass is to reduce sensitivity to the underlying event.Comment: 21 pages, 7 figure

    JUNIPR: a Framework for Unsupervised Machine Learning in Particle Physics

    Full text link
    In applications of machine learning to particle physics, a persistent challenge is how to go beyond discrimination to learn about the underlying physics. To this end, a powerful tool would be a framework for unsupervised learning, where the machine learns the intricate high-dimensional contours of the data upon which it is trained, without reference to pre-established labels. In order to approach such a complex task, an unsupervised network must be structured intelligently, based on a qualitative understanding of the data. In this paper, we scaffold the neural network's architecture around a leading-order model of the physics underlying the data. In addition to making unsupervised learning tractable, this design actually alleviates existing tensions between performance and interpretability. We call the framework JUNIPR: "Jets from UNsupervised Interpretable PRobabilistic models". In this approach, the set of particle momenta composing a jet are clustered into a binary tree that the neural network examines sequentially. Training is unsupervised and unrestricted: the network could decide that the data bears little correspondence to the chosen tree structure. However, when there is a correspondence, the network's output along the tree has a direct physical interpretation. JUNIPR models can perform discrimination tasks, through the statistically optimal likelihood-ratio test, and they permit visualizations of discrimination power at each branching in a jet's tree. Additionally, JUNIPR models provide a probability distribution from which events can be drawn, providing a data-driven Monte Carlo generator. As a third application, JUNIPR models can reweight events from one (e.g. simulated) data set to agree with distributions from another (e.g. experimental) data set.Comment: 37 pages, 24 figure

    On filter boundary conditions in topology optimization

    Get PDF

    Neural Networks for Full Phase-space Reweighting and Parameter Tuning

    Full text link
    Precise scientific analysis in collider-based particle physics is possible because of complex simulations that connect fundamental theories to observable quantities. The significant computational cost of these programs limits the scope, precision, and accuracy of Standard Model measurements and searches for new phenomena. We therefore introduce Deep neural networks using Classification for Tuning and Reweighting (DCTR), a neural network-based approach to reweight and fit simulations using all kinematic and flavor information -- the full phase space. DCTR can perform tasks that are currently not possible with existing methods, such as estimating non-perturbative fragmentation uncertainties. The core idea behind the new approach is to exploit powerful high-dimensional classifiers to reweight phase space as well as to identify the best parameters for describing data. Numerical examples from e+e−→jetse^+e^-\rightarrow\text{jets} demonstrate the fidelity of these methods for simulation parameters that have a big and broad impact on phase space as well as those that have a minimal and/or localized impact. The high fidelity of the full phase-space reweighting enables a new paradigm for simulations, parameter tuning, and model systematic uncertainties across particle physics and possibly beyond.Comment: 7 pages, 3 figures; v2 has updated citations and clarifications; v3 has a new appendix with an alternative fitting metho

    OmniFold: A Method to Simultaneously Unfold All Observables

    Full text link
    Collider data must be corrected for detector effects ("unfolded") to be compared with many theoretical calculations and measurements from other experiments. Unfolding is traditionally done for individual, binned observables without including all information relevant for characterizing the detector response. We introduce OmniFold, an unfolding method that iteratively reweights a simulated dataset, using machine learning to capitalize on all available information. Our approach is unbinned, works for arbitrarily high-dimensional data, and naturally incorporates information from the full phase space. We illustrate this technique on a realistic jet substructure example from the Large Hadron Collider and compare it to standard binned unfolding methods. This new paradigm enables the simultaneous measurement of all observables, including those not yet invented at the time of the analysis.Comment: 8 pages, 3 figures, 1 table, 1 poem; v2: updated to approximate PRL versio
    • …
    corecore